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Abstract

A iecirion prob1~ m t s  chara c t~ rized by loss function V

and oph~L~~: H. Th~ ~ai r (V , H) is :atd to b~ strongly stable 1ff

for every s’~qu enc~ F~ H, G H and L~ 
-

~~ V , W~ ~ V uniformly,

u r n  u r n  sup [L ( e ,D(~~~) dF ( ~~) - m l ’ L~(~~,D)dF~ (9)] = 0
D

for every sequence Dn(~~) 
satisfy ing

inf wn(e,D)dGn (A ) + e .

We show tha t square d erro r loss is unstable with any pair if the

parameter  space is the real L ne  and that  any bout~i~ d los~ f u n c t i o n

v( e , D) that  I s  c o n t i n u o us  in 8 u n i f o r m l y  in D is stable with any

opinion H. Finally we examine the e . ;t ima t ion  or p r e d i c ti o n  case

v( q ,D) = h (e-D), whe re h is continuous, non-decrea sing in (o ,~~)

and non-increasing in (-co, O) and has bounded growth. While

these conditions are not enough to assure strong stability , various

conditions are given that are sufficient.

We believe that stability offers the beginning o a Bayesian Theory

of robustne ss.

Key words: Decision Theory , Robustness, Stable Estimation, Stable

Decis ions

AMS Classification: Primary 62C10, Seconuary 62q.55
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~ta ble Dec ision Pro blems

by

Joseph B. Kadane and

David T. Chuang

1. intro duct ion

~Subjectivists should feel obligated to recognize that

any opinion (so much more the initial one) is only vaguely acceptable.

(I feel that objectivists should have the same attitude.) So it is

important not only to know the exact answer for an exactly specified

init ial pos ition, but what happens changing in a reasona ble neighbor-

hood the assumed initial opinion ” de Finetti, as quoted by Dempster

[19751.

A well known principle of per sonalist ic Bayes ian theory

is that no one can tell someone else what loss function to have or

what opinion to hold. Having said that, the reasons for  look ing

into properties of particular choices of loss functions and opinions

might be obscure .

The standard of personalistic Bayesian theory may be too

severe for many of us. Generally when a persorialistic Bayesian tells

you his loss function and opinion, he means them only approximately.

He hopes that his approximat ion is good, and that whatever errors he may

have made will not lead to decision s with loss substantially greater

than he would have obtained had he been able to write down his true

loss function and opinion. There are two special cases that have been



ccu : i d e  r~~1. In t~~ f i  ~~:t , ori ~ car.uot (o i  n c e d  no t )  ob ta in  one ’ s

exact prior probabi~~ ty. Stos [196~ ] tudied aecision procedu r~ s

witn respect to the sse of wrong p r i o r  d i s t r ib u t i o n s .  He emphasized

the  p~i ss iL 1~ useI’ul !ies: of n o u - i  ieal ~ toce~ ur s that do not require

f u l l  specification 01’ the prior probability i~ str~ bution. Fishburn,

Mu rphy and Isaacs [1967 ] ani F i er c €  and Folks [1969 ] also discussed

W~oision making uni~ r uncer tainty wh~:n the aecisior . maker has

dtffLculty in assign i ng prior probabilitie s . They outlined six

approaches that may be used to assign probabilities. In the second

case, one cannot obtain one ’ exact utility function. Britney and

Winkler [1972k ] have i n v est i g a to d  tho  pr op er t i es  ct ’ Bayesian point

estimates under loss  fu n c t i o ns  other  than the simple linear and

quadratic loss functions. They also discussed the sensitivity of

Bayesian point estimates to misspecification in t~~ loss function.

Schialfe r [1959] and Antelman [1965 ] dIscuss relating the utility

of the optimal decision to the utility of suboptimal decision s in

certain contexts.

The closest related work , however , is the material on stable

estimation in Edwards, Lindemar: and Savage fl96~ ]. They propose

that there is data such that the likelihood function will be

sufficiently peaked as to dominate the prior distribution . The criterion

for  ro bustne ss is that the den sit ies of var iou s poss ible po ster ior

distributions are close. This paper extends that analysis by allowing

a loss funct ion, and by allowing a sequence of’ opinions (prior or

posterior), without inquiry into whethe r the source of uncertainty

might be the prior or the likelihood function. We see no reason why

the likelihood function is known more surely than the prior distribution.

I
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3.

To give an i ni t i a l  fo rmalizat ion of our  ques t ion , suppose

that  the parameter  space is for  some k , and the decision

space is 8c  E L for  some 2 . If F ( S )  is my ( approximate)  opinion

over 8 € ® , and L ( 8 ,D) my ( approximate)  loss func t ion , the

( approximate) loss of the decis ion  problem to me is

(1) W = inf r L ( e . D ) d F ( e ) ,
D € .&

which is here assume d to be f i n i t e .  Then for every € > o, there is

a decision D ( € )  which is € - optixnal , that is

( 2 )  L ( 8 , D ( € ) ) d F ( 8 ) < W + €

Suppose , however , that my “ t rue ” opinion over ~ is on a

sequence F~ ( c ~) which converges to F ( c ~) in di s t r ibu t ion .  Then

the probabi l i ty  of any subset  of E is nearly the p robab i l i ty  given

by F’ (e ) .  Also suppose that my “t rue” loss function ove r ~ is

L
~

( e , D) which converge s uniformly in S and B to L ( 9 ,D ) .  Then

the re is a sequence of “ true ” losses gen erate d

w = inf L ( e ,D) dF ( 8 )n D € 8  n n

and a sequence of losses generated by behaving according to the

approximate opinion and loss function :

w~ Ln(S~
D (€))dFn(B)

The worth of knowing the truth is then

Bn = W
~~

_ 1 U
n

_ _ _  —~~~. - —-- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- .

~~
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4 .

which is alway s non-negative.  Note that B~ is a funct ion

of € , D ( € ) ,  n , L~ and F~ . Suppose that

~5) u r n  u r n  sup B~ = 0
€40 n -~~

w
for eve ry choice of Ln 

-
~~ L uniformly, F~ 

-
~~ F , and every choice

of D (€ ) satisfying (2). In this ca~e, the pair (L ,F )  is

called strongly stable (L.y Definition 1). The above definition makes

sense since , the non-negativity of B~ implies that , fo r  each € ,

lim sup En > O

Further, as € decrea ses to zero , the set of possible choices D (€)

is non-increasing. Thus the possible value s of u r n  sup B~ is monotone

and bounded below by zero . Thus the limit in (3) exIsts.

There are situat ions in which ( 3 )  holds for  every choice
w

of L~ -~L~ uniformly and Fn -
~~ F , but only for  some part icular choice

D (€). In this case, D (€ ) is called the stabilizing decision, and

the pair (L, F )  is called weakly stable (by Definition 1). If

(L ,F )  is not stable (either strongly or weakly), i t  is called uns t able .

The m o t i v a t i o n  fo r  the ,~e d e f i n i t i o n s  is that if an op inion ani

oss func t ion  are st rongly stable , then small e r ro rs  in e i the r  will not

re sult in subs tan t ia l ly  worse deci s ions .  If on the other hand, a

Bayesian f i n d s  that the loss func t ion  and opinion he has written down

are unsta b le, then he may wish to reassess his loss function and

opinion to be certain that no errors have been made. When he finds he

I 
- - — —~~~~~- -- ~~~~~~~~~~~~~~~~~~
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5.

has w r i t t e n  down a loss f u n c t i o n  and opinion which is weakly but

not strongly stab le, a Baye sian may choos e to make the stabilizing

iec ision to have protect ion against errors in either the loss function

• or opinion.

From a more general point of view we can formulate our

p roblem s a:’ fol lows:  Take (L iy Fn ) as a sequence 01’ t ru ths , and (W ~ , G~~)

as a sequence of approximat ions  where

-
~ V , W~ -

~ V uniformly and

w w
F~ 

-
~ H, G~ 

-
~~ H

Now act as if (we, G~ were t rue and evaluate at ~~~ F~~:

Let D~ ( e )  be def ined  by

(4 )  r Wn ( e , Dn ( € ) ) d Gn ( e )  < inf W~ ( 8 ,D ) dG ~ ( 8 )  + € .

It ’ for  every such cho ice of

(5) i i rn  u r n  sup r Ln ( 8~~Dn ( E ) ) d Fn ( 9 )  - inf L~ ( e , D)dF ~ ( 8 ) ]  = 0

then (V ,H) is strongly stable (by  D e f i n i t i o n  2 ) .

‘If there is some choice of Dr ( € )  which makes ( 5)  hold , then
(v ,H) Is we akly stable and D~ ( c )  is the s tabi l iz ing decision ( b y

Def in i t ion  2 ) .

~~~~~~~~~~~~~~
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In this pap~ r, this secon i set of iel’Lni t ions is u -ed

throughout .  We c - o n i c c t u r e  t~iat the  d e f i n i t i o n s  are eq u iv a l e nt .

However  the second d e f i n i t i o n  p e r m i t s  the reader anothe r i n ter p r e t a t i o n :

the apparen t  t r u t h  can be on a : equence (L r~~Fn ) approac :iin~ the

f i x e d  t r u t h  ( V , H ) .  D e f i n i t i o n  2 al lows both th~ appar en t  t r u t h

( L ~ , F~ ) and the actual truth (W 1 1 G0 ) to b~ sequences , and is t i i u s

mo st  general .

Section 2 in t roduces  D e f i n i t i o n  3, whIch is apparently simpler

than Definition 2 , and show s i ts  equ iva lence  to D e f i n i t i o n  2. Then

some simple examples are given. In Section 3, bounded loss functions

that are continuous in the right way are examined , and shown to be

strongly stable when paired with any op inion . Finally Section ~

t n~’~~~ up estimation (or, equivalently , prediction ) loss functions

~t to a L ip sc hit z  condi tion r e s t r a in ing  i ts  growth , and finds

~ of them strongly stable , and some unstab le .  To simp l i f y

ma t t e r s , assume the one-dimensional case (k = L = 1).

~ 

. • .~~ _ _ _ _  _ _ _ _
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2. A General Structure Theorem and Some Examples

In the first part of this section we in t roduce  ye t  another

definition of strong (weak) s t ab i l i t y , D e f I n i t i o n  3 and show that

it is equivalent  to D e f i n i t i o n  2. The greater simplicity 01’

Def in i t ion  3 help:; to simplify the r e s t  of the paper .

Suppose F~ ~ H and Gn~~ 
H. Let D~ (€ ) be -defined, by

(6 )  SV(8,Dn(€))dGn(e) < thf $ V(9~ D)dGn(9) +

If , for every suc h choice of ~~ G~. and D~ (€),

( 1) Urn u r n  sup [ 1 V(9,D1~(E))dF~ (e) - inf$ v( e , D~dF~( e ) ]  = 0

D

then (V,H) is strongly stable (by Definition 3) .  If there is

some cho ice of D~ (€ ) which makes (6) hold, then (V,H) is weakly

stable and Dn(€) is the stabilizing decision (by Definition 3).

Now we can state

Theorem 1 (V,H) is strongly (weakly) stable by Definition 2 if and

only if (V,H) is strongly (weakly) stable by Definition 3.

Proof: It’ (v ,H) is strongly (weakly ) stable by Definition 2, one

of the allowable choices for L and W~ is L~~=W~~=V for all n.

Strong (weak) stability by Definition 3 then follows trivially .

Suppose , then, that (V,H) is strongly (weakly) stable by Definition

3, an d su ppose that L~ and W~ are ar bi trary sequence s of los s

functions converging uniformly in 5 ana D to V. Choose E > 0 ,

-

. 

and let D~(€) be defined by equation (4).
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Choose N1 3

- V ( 8 , D) I  < € for eve ry 5 and D, using the uniform

convergence of to V. Then

i~~I
’ $ Wr (B~ D)~~

Gn(~~) 
- irif I V(8~ D)dG~ (9)

= Lnf$W~ (B, D)dG~ (9) - inf j ( v ( S , D) - W~~( 9 , D ) + w ~ ( e , n) ) dG~ ( e )

- i nrj ( v( s , D) - W ~ ( B , D) ) dG~ ( 9 )

< SUP J• (W n ( 8 , D) _ V ( B ~~D ) ) d G n (
~~)

D

< €

Also t f l f S W n ( S~ D ) d G r~( 8 )  - inf $v  ( e , D) d G~( e )

= inf j (W0(e,D)
_ V(e,D)+ V(e~ D))dG~ (8) - inf ~~ V( 9~ D ) dGn ( O )

~ inf 1 (Wn(8,D)
_ V(8

~
D))dGn(8)>-€~

Then 
D 

inf r w~ ( e , D ) dG~ ( e )  - inf $v( 5 , D) d ~~ (~~) t  < € .

Al so r w~ ( e , D~ ( € ) ) d G ~ ( e )  - $ v ( e , D~( € ) ) d G ~ ( e ) I  < €

j V(e, D~ ( € ) ) d G ~ ( 8 )  - iflf SV(9,D)dGn(8) <
D 

~~~~~~~~~~-- -.----- -- . ,• • - - ~~~~~~~~~~~~~
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J Jv(~ ,D~(E))dG~(~~) _ $ W0(~ ,D~(E))d G~(~~)I

+ I $ w ( e ~ D ( € ) ) i G ( e )  - inf $ W~ (~~, D ) u G ~ ( e ) I

+ j inffW~(~~,D)dG (~~) - inf5v (9,D)dG~(eH ~

Hence if D~ (€ ) is €-optirnal for ~J ,G ), it is 3€-optimal

for (V
~
Gn)~ 

for all n > N1. Choose 6>0. Then by the uniform

convergence of L~ to V, ~N2 ? yn>N 2

!Ln(8~
D) -v(e,D)f < ~~~

.

By exactly the same argument as above, substituting L~ for

W~ and F~ for G~, we have

Inf SL n ( 8~D)~~n ( 9 )  - m l ’  $ V(~~,D)dF~(~~)I < 6.

D B

Also 
$ 

Ln ( 8~~Dn ( € ) ) d Fn ( 5 )  - $ V ( e , D~ ( € ) ) d F ~ ( e ) j  < 5.

Hence yS > 0 ~iN2 ? yn > N2,

I [ J
’Ln (~~~Dn ( E ) ) ~~~n ( 8 )  - inf$L (9,D)dF (9)] -

[$V (5 ~
Dn(€) dFn(5) - mn~’iV (e,D)dF~(e)]) < 26.

• Thus

u r n  sup [ $ Ln (9~ D ( € ) ) d F ( O )  - inf$Ln(8~ D)
dFn(8)}

- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~ . 
• . ~~~ •~~~~~. ~~-•~~~~~~~~~~~~~~~ •~~~~~~~~ —•
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= lirn sup [IV ~~~
Dn(€))dFn(8) 

- mnf J V(e,D)dF~ (O)].

• .

‘ Finally, taking D~ (€ ) defined by (4), € ‘ 
=3€  and D~ (€

’)

defined by ( 6 ) ,

u r n  u r n  sup fl L (e,D (€))dF (e) - mnf$L~ (B ,D)dF1~(e)] =

• D

sup [ r V ( 5 , D~ ( € ~ ) ) d F ~ ( 8 )  - inf $ V(e,D)dF~(e)] = 0.

€ 4.0

Thus if (v,H) is strongly (weakly) stable by Definition 3, it

is strongly (weakay) stable by Definition 2.

Q.E.D.

When stability is referred to in the rest of this paper,

Definition 2 (or equivalently, Def init ion 3) is to be understood,

unless otherwise specified.

Exarn;le 1. Composite hypothesis, composite alternative.

Suppose that there are only two available decisions [1,2),

and suppose that V is defined as follows:

v(e ,1) = 0 and V(8 , 2) b it’ 8 < a;

V ( 8 ,1) = c an d v(~ ,2) = 0 ii’ e > a,
where b an d c are assumed to be pos itive.

Then / I if bG~~a) > c(1 - Gn ( a) )  + €

= 2 if bG~ (a )  < c( 1_ G
n(a)) 

- €

• either if c(1 - G~ (a) ) 
— € < bG~ (a )  < c( 1 - Gn ( a ) )  + €

-~~~~ .. - ~~••- • ~———-•• •~~~-- •,.-•~~•-~~ ---- ~ ---- — •-,-- ~~~~~~— •~~-
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11.

c(I_ Fn ( a) )  i t’ bG~(a) > c(I_ G n(a))+€

~ bF~(a) it’ bG0( a) < c(1-G~(a)) - €

~ either(depends on D~(€)) if c(1_ Gn(a)) - €  <

bG (a) <

J~
V(8

~
Dn(€))dFn ( 8 )  - inl V(S D)dF (8)

max [0, c(1-F (a)) -bF (a)), if Gn ( a) > 
C + E

n b + c

= max [0, bF~(a) -c (I-F (a))), if G~(a) <
b + c

either of above (depend on D~ (€)) if 
C~~~~€ < Gn ( a) <
b + c  

— 

b + c

Suppose H(a-) < 
C 

< H(a).
b ÷ c

c - c  
_ _ _Then ~ € > 0  3 H(a-) < < < H(a).

h+c b+c

Take Gn to be a sequence such that

G (a) -* R where 
c + € < B

*
< H(a)

b + c

Take F~ to be a sequence such that

F (a) -
~~ 

where H(a-) K ~~~ < 
c -€  

•
b + c

Then for large enough n, D~ ( € )  = I and

JV(5~
Dn(€))dFn(8) 

- inf ;~V(5,D)dF~(8)

L • 

±IT0I1ITIT 1.

~~~

•

~ 

_____________
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As ~~~~~~ c (I-F0(a)) 
- bFn(a)

•w* C — c
-
~ c — (b-+- c )8 > c— ( b + e )  = € > 0 .

b + c

Henc e
Ic *

lim lim supIJV (~~
Dn(€))dFn(S) 

— int’V (8,D)dFn(~~)€40 n-’~~ I D

=

so (V,H) is unstable in this case.

Similarly we can show it’ H(a-) K = H(a) then (V,H)
b + c

is weakly stable and the stabilizing decision is 2 • So we can

see (V ,H) is unstable 1ff H(a-) < —s-- < H(a), weakly stable
b + c

1ff H(a.) K 
C 

= H(a), with 2 being the stabilizing decision, and,
b-+ c

strongly stable otherwise. In particular , if H is cont inuou s

at a then (V,H) is strongly stable.

Example 2. Simple hypothesis, composite alternative.

An alternative two decision problem can be defined as I’ollows :

Let
v (e , 1) = 0 ~nd v ( e ,  2) = b if = a

v(~ , i)  = c and v(~ , 2) = 0 it’ S a

b, c, > 0

Let J~ (a) = F~(a) - Fn(a_) and

• K~(a) = G~ (a) - G~ (a_)

Then the calculation of ~~~ formula (14), is exactly as example I

with J replacing F and K replacing G.

- - ,  ~~~• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ______
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Thus - max (o ,c(i _ J
~ (a)) _bJ~ (a)1 if K~(a) > 

C + E

b + c

B~1 max (0 , bJ~~( a )  _ c ( 1 _ J ~~( a ) ) )  it’ Kn ( a) <

ei ther the above it’ C - € 
< K~(a) < 

C + €

. 
b + c  b + c

From this it is easy to see that (V,H) is

(1) strongly stable if H(a) - H(a-) K 
C

b + c

(11) weakly stable if H(a) - H(a-) = 
C

b + c

( the  s tab i l i z ing  decision Is 2)

( i i i)  unstable if H ( a )  - H(a— )  > 

C

b + c

ample .~~~ Squared Error Loss.

aside r~~ ® = , the real line, and the pair

((e-D)2,H) for any opinion H(S) with finite variance.

Let = H yn , and let u and be the mean and variance

of H(S), which we assume ex ists

Then 
• -

fv( e , D)dH(e )  = a2 + (~i -D)
2.

When D = u we achieve the infirnuni and for every € > 0 ,

and every Dn(€)~

; 
~~~ D~~( € )  K u  +~~~‘~



____ •

1L~.

By fin iteness of c~~, the infimum value is finite. Let F~ (8) be a

convex combinat ion of H(S) and J~ (e) with weights (1-!) and n
where J~ (G) is the distribution function of the random variable sure

to take the value 0 = n. Also let ~i the mean of F~ . Then

= (1-i ) u + l , and

u r n  sup ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
f l -~~a~

= u r n  sup [j’[(8_ D ~ (€))
2 

- ( e _ ~~~) 2 )dF~( e ) ]

= (u~~
_ D

~(E))
2

~ (1- 
w~~~~~~~.,2

n

-
~ (1- ~~~~

Thus, for any op inion H(s ) with f i n ite variance , the pair ( ( e  - D ) 2,H)

Is unstable. 

~~-— —- - -• — —  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3. Boun ded continuous loss functions

The d i st i nc t i on  between two concepts at’ uniform cont inu ity

of a function t’(x,y) of two variables is important in the sequel:

I’ is called con tinuous  in x uni fo rmly in y 1ff

y € > 0 , yx , a o > o  3 yy, I x - x 0 1 < 6  ~f(x,y) -f(x0,y)~ <

f is called uniformly continuous in x uniformly in y 1ff

y € > o a o > o 3 yx yy Ix - x 01 < 6 If (x,y) -f (x0,y)I < €

The following lemma shows that these concepts are related

in the same way that continuity and uniform continuity are.

Lemma 1: Suppose f(x,y) is continuous in x uniformly in y

on a compact set x € S. Then f is uniformly continuous in x

uniformly In y.

Proof: Suppose the contrary . Then a € > 0  3 yS >0 ax ,y ~ I x - x 01 K 6

and If(x,y) -f (x0,y)~ > € choose 
~1’~ 2’”’~ 

6~~
>0 and 6 - ~ O. Then there

exist ~ ) 0 and sequences u~ and v~ in S such that.

I u~ - ~~~ < 6 and I f(u~, ~
‘n) - f( v~, ~n

) I > a

Compactness of S implies that un have a limit point ~ € S and

v~ must have the same limit potht. Take 6 > 0 be arbitrary small.

• Then infinitely many pairs u~, v~ lie within 6 of ~~. But this

contradicts the continuity of f at ~ unifo rmly in y.

Q.E.D.

.
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Lemma 2: Suppose that

• (i) v(~ ,D)I < B for all 0 and D

(ii) V (9,D) Is continuous in 8 uniformly in B

(Iii) F~~-~ H

then
y € > 0  a N 3 y n -> N  ~D

Pron’ € > 0 . Choose a and b, points of continuity of

H (x), c H (a) < ~~, I - H (b) < € .  In the closed interval

~a,b] the function v ( e , D) is uniformly continuous in ~

uniformly in D, by Lemm a a - i  Assumption ( i i) .  Then there

exist points of continuity of H(S) in [a,b)

a = a 0 < a 1 < ... < a
~~

= b such that

I V ( 8,D) - V(a k, D ) I  < €

for all D and for ak < 8 < ak+l k=0,.. .,s-1.

IV(ak,D) ak � S < ak+I k=0,...,s-1
Let V~(~~,D) =

0 otherwise

Then for any distribution function G(e),

Sv € (e ,D ) dG (e )  = z V(ak,D) [G(ak+I) - G(ak)].

Since F~(8) 
-

~~ H (e) as n -
~~ ~ at 8 - ak

Sv~(e,D)dF~(e) -
~~ SV~(e,D)dH (e ) yD

and since s is finite, the above occurs uniformly in D. 

•- -—- -—-——--~~ 
- - --

~~~~~~~~

•-
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Thus
y € > o  ~~N y n > N  ~D I $V € (0 ,D)(d(Fn(

0)_ H (e)))I < € .

For any distribution function G(Ei)

SIv(e ,D) - v ~(e ,D))dG (e) = ~ Iv(e ,D)-V~(8,D)I dG(e)

+ Iv(e ,D) - v~(e ,D)IdG(e) + Iv( é,D) - v~(0,D)IdG(e)

< BG(a )  + € [G(b) - G ( a ) ]  + B[1 - G ( b ) ]  yD .

Apply ing this to H (S) yields

5IV(O ,D) _ V
~(e ,D)IdH (o ) < (2B+1)€ .

Apply ing it to F~(O) and noting that

F~ (a)  -
~~ H(a), F~ (b) ..~ H ( b ) ,  y ields that, for large enough n ,

- V~ ( 0 ,D ) I  dFn ( 8 )  < ( 2 B + 2 )  € .

Then 3N 3 Y n > N  ~D

- $ v(e,D)dH(e )I
I J [v(e~D) — V~ ( e~D)]dF~ I + Ij1 V~ (e,D)[dF~ (e) — dH (e)]t

+ J (v(e ,D) - v~(e,D))dH(e)l

< (2B+2) € + € + (2B+I) € = (4B + 4) e.

Since € is arbitrary , Lemma 2 is proved.

TheorerL 2: Suppose (I) IV( 9,D)I < B for all e and D . (ii) V(e,D)

is continuous in B uniformly in B. Then (V,H) is strongly stable.
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1- roof: By Lemma 2, y € > o  3 N1 3 ~~~)-N1, yD

I Jv( e~D)d(H(e) - F (9))I < € , and

3N 2
3 y n > N 2, yD

I fv(e ,D)d(H (e) -G~(e))I < € .

Then y n > max (N13 N2), yD

Jv(e~D)dF~(9) - Jv(e 3 D~ (€))dF~ (o)

�~ (fv(o,
D)d H_ € )  - (JV(e3 D~ (€))dH(e) +

> fv(e,D)dH - fV(e3D~(€))d H - 2€

> (JV( 8
~
D)dGn

_ E ) - (fL(0 3 D~ (E))dG~ + € ) -2€

>J’V(9,D)dG _
fV(s~D~(€))d G~ - 14€

So 
~‘ f ’

u r n  lim sup [ int’ V ( P , D ) dF ( 3 )  — 
- 
V (5,D (€ ))- ciF (n)] = 0

€40 n -~ c~ D
Q.E .D.

Example 4: Take the same example as example 3, only restrict the

domain, so that ~~ = = C where C is some compact subset of R.

Then squared error satisfies the condition of Theorem 2, and is

therefore strongly stable w~Len paired with any opinion H.

- _--——•— --
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14, Estimation or Prediction Loss Functions with Bounded Growth

• In this section, the t’ollowing assumpt ions  are frequent ly  used:

(I) V(~~,D) = h (5-D), where h is continuous, non-decreasing in

(O , c~ ) ,  non- increas ing  in (-oo,O) and h(0)= 0.

(ii) h satisfies the following LipsChitz condition in the tail:

Ih( x) -h(yfl K B~ x-y~ for  all l~ t > y0, all x, and t’or

some constant B> 0.

Note that in this section B represent s a bound on the growth of h.

However h itselt’ may be unbounded. The following example shows

that assumptions (i) and (ii) are not sufficient to ensure stability .

Example :~~ Let
I l x i it’ -I<x

h(x) = -
~~(, 1 oth e rw ise

and let H(s) be the distribution function 01’ any random variable

that has a finite mean. Let Gn(8) = H(8). Then D~ (€) is defined

as any dec ision D sat isfy ing

Jh(8~~
Dn(€))dH(S) ~ int’~~h(8-D)dH(8) + € .

First we show that n~(€) is boun ded below for suf f ic iently small

€ >0. Let be a median 01’ H. We show that Dn(€) < d* -2

leads to a contradiction for c < ~ as follows: Let d < d,* - 2
r * *Id-I d d-I d

S (h (e-ci) _h (e_ d *))dH (e) = I + + f + + I

[ -1~ ~d-l ~~

(h (e-d) -h( e -d ))dH(8)



-- • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 
— ~~~~~~~~~~~~~~~~~~~ 

•

* 20.
d-l d d - 1

= (I-1)dH (~~ ) + 
d 1  

((d-~ )-1)dH(e) + 
~ 
((e-d)- 1)dH(~~)

+ ( ( ~~-d) - ( * ) ) ( )  - ( * ) ) ( )

(~~-d-1)aH (0) + S ((d-d)_l)dH(0)

*d

+ 

d - I  

(cl *_ 1_d ) - (d
*_d~1)dH(e) + t (d*_d )

*d

- 

d.-I 
dH + ,(d*_ci)

> _ b + 1 ( d
*
_ d ) >~~ .

Hence we must have D~ (€) d* 2 if € < t .

Let F~(4) be a convex combination of H(s) and

with weights (1_I/n ) and 1/n respectively , where is

the distribution function of the random variable sure to ta~ the

value B = 2n + Dn(€)• Then

_ _  ____________ -•.~~~- —~~~ -• . • -•
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- inf$V(S,D)ciF~ (8)

= $h (e_D~(€))dF ~(e)_ int ’ $ h ( e _ D) dF~ ( e )

~ $h(e~ D (c))dF (~~) -Jh(e-D (€)-2n)dF (e)

= 
~~ (

2fl+D (€) - Dn(E)) + (1 - 1/n) $h (e~ D~(€))dH (e)

- (1-1/n ) 
$ 
h(~~D~(€) - 2n)dH(B)

Dn ( € ) + 2 n

> 2 - 

$ 
h (e_D~ (€)_ 2n)dH (e) - 

$ 
h(e-D~ (€)- 2n)dH (0)

—
~~~ Dn(€)+2fl

> 2 - I - e d H ( 9 )  + (2n+Dn(€))d H(e).
D (€ ) + 2 n

Now since D~(€) is bounded below by d - 2 , D~(€)+2n 
-
~ ~~.

The existence of the mean of H implies that

u r n  
J 

e d H ( e )  = 0,

So the first integral above approache s zero. Similarly the

existence of the mean also implies that
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S 
(2n+D~ (€)dH(0) = (2n+Dn(E))(1 - H(2n+D (€)~~~~~~ o.

Dn ( € ) ~4~2n

( see Feller , 1966 , p. 149 , l ine 5). Hence

lim lim sup 
[$

V(B~ Dn ( € ) ) dFn ( 0 )  - inf 1V(0 ,D)dF~(0~ ~ 1,
€4- 0 n-~- c ~ D

so (V ,H) is unstable.

Lemma 3: The pair (V,H) is strongly stable if, in addition to

conditions (i) and (ii), the following cindition (iii) obtains:

(i i i)  There is a compact interval  [a , b] and an

such that for every € , 0 < € < every sequence Gn~~ 
H, and

every sequence of c-optimal decisions D13 D2,... for (v,G~),

there is an N such that for all n >N , Dn € [a,b].

Proof: Without loss of gene ral i ty  we may assume b > y0, and

a < - y 0.

Since h is continuous in [a , b ] ,  h is un ifo rmly continuous

in [a,b}. Thus given €- > 0, there exists a 5> 0 such that for

every x,y€ (a,b], Ih(x)-h (y)i < e it’ i x—y l K S . Choose

6< (b-a)/2. Now there is a finite open cove ring of [a,bJ

[(c13 d~ )Ii= 1,2,...,K) such that dj-c~ < 
min [6,€) for all

,K. Let e L € (cj,di). We now proceed to show that

~
h(S_e i) -h(5-e~ )I is bounded. Without lcss of generality,

_ 
__••

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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let e 1 >e~ . Also let D = Max and C=Min

1=1,... ,K 1=1 , . .

(a) If B > e1 + b, tY en

I h (B—e 1)— h (5-e~ )l < B~ (B_e r) - (~
_e
~)I =B (e i

_e
jl <B (D C).

(b) It’ e1 + b > 9 > e ~~+b~ then

Ih(e-e 1) - h (8-e~ )I <th(e-e 1) -h( b )i÷jh(b ) -h(6-e~ )I

< h (b )+ h ( b + D -C )+ B tb - 8 +e ~~I

K h(b) + h(b+D-C) + B(D-C).

(c) It’ e~~+ b >~~> a + e 1, then

lh( S— e~) 
—h (5-e~ )I K h(b) +h(a)

since (e—e 1) € [a,b), (8_e
d ) 

€ [a,b) .

(d) If e1 +a> 9> a + e ~ 3 then

jh(~~-e1) - h (5-e~ )i< lh(8-e
~) 

-h (a)I + Ih(a) -h(~ -e~ )I

< B I 8 _ e i _ a i + h(a)+h (a+D-C)

= B(a+e1 -B ) +h(a) +h(a+D-C)

< B(D-C) + h(a) + h (a-1-D-C).

(e) It’ a + e j>B s then

-

- 

lh( 8-e 1) - h(e ~ej)l I BIe 1 -e~ I IB(D-C).

L —- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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• Thus h(9 - e~ ) - h(9 - e~ )l is bounded. By the Helly-Bray

-
. 

theorem there exist N1~ and ~ yn > ~~~

I $(V(ej,9) ~ V(e~~ 0))dF~ ( B )  - 

$ 
(V(e1,O) -V(e~~B))dH(B)I <€ ,

and Yn>M
~~~

I $(V (ei~e -V (e~~ efldG~ (e - 
S ( V ( e ~~~~

,5)  -V(e~ 19))dH (5)I < €.

Let N0 = max(N12, N13,. . ~~~~~~~~ M12,M13,. . ., Mkj k ) .

Now suppose ti€ (c
~
d
~ ) 

and t2 € ( c 1, d~ ) for  some i. Our

purpose is to bound ~h(9-t1) ~ h (c~~t2)J . Without loss 01’ generality,

as sume t1 >t2.

(a) If e > t 1 +b , then

l h (e—t1) ~ h(9_t2)I K B~t1-t~~ I B€ .

(b) If t1 -~- b > 9 > t 2+b, then

h(~~-t1) -h (~~-t2)I I Ih(5-t1) -h (b )j + Ih(b ) -h(e-t2)I

+ B I 0 -t 2 - b I 
~~ 

€+ B€ = (B+1)€ .

(c) If t2 +b >~~> a+t1, then

b > 9 - t 2> e - t 1 >a , and

I ( e - t 1) - (e~~t2)l = 1t 1 -t 21 < s .

Thus Ih(e -t 1) -h(e -t 2)I < € .  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ --
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(d) If a+t 1> 9 > a + t 2, then

6 > t 1- t 2 > 5 - a - t 2 > O .  Thus

lh(G - t1) - h(e - t2) I I Ih(e - t1) - h(a) I + Ih(a) - h (P - t~ ) I

• I B(a + t1 
- 0) + € I (B+1)c.

(e) a÷t 2 >9.

Ih (e -t1) - h(B -t 2fl I B~t1 -t2~ I B€ .

Thus for all 0,

I h ( e  - t1) - h(e  — t21 I (B+i)€ .

Let d€  [a,b]. Then there is an / such that d c (cL , dL ). Let

n)N0. There is an m such that Dn(€ )€ (c m~
dm )• Then

( v ( i , 9 )  _ V(Dn(E)~ B))
dFn(B)

= 
~ 
{V(d,e) -V(e2,S) + V(eL , 8) -V(D~(€ )~~e) +V(em,8)

- V(em,8)]dFn(8)

> -2(B+1)€ + r (v (e2,e) _V(em,9))dFn(B)

> -2(~~ 1)€ + $(v(e~,e) _ V ( e m, B ) )  d H ( e )  - €

> -2 (B-F1)E+ $(V (e2,B) _ V(em,8))dGn(8)
_ 2€

> -2(~~ 2)€+ $ ( v ( d ,~~) ~ v(D~ (€),e))dG~ (e) -2 (~~ 1)€

> - ( 4 B ÷ 7 ) €  

• _ _ _
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Then y n > N0

$v( i,e)d F~(e) -

d € [a , L }

N ow F~~ * H, so ii’ D~ (€ ) is a sequence of €-optimal decisions

for (F~~V) then ~N ~ yn >- N, D~ (€) €[a,b]. Thus yn )-Max(N,N0) ,

m t  $V( d,9)dFn(S) = mnfj’V (d,e)dF~(0).

d€ [a,b]

Thus yn > Max(N,N0),

i~~ SV (d 35)dFn(B) _$V (Dn(E),O )ciFn(S) �~ 
— (4B-i-7)€ .

Hence

lIrn u r n  sup [thf $V(D,e)dF~ (e) - JV(Dn(€)~~8)
dFn(0)] = °.

Thus (V,H) is stable.

~.E.D.

Theorem 3 The pair (V,H) is strongly stable it’, in addition to

conditions (i) and (ii),ti.2 following condition (iv) obtains:

(iv) : there exist r>- 0 such that h(x)).rIx I , yx

Proof: Since H is a distribut ion t’unct ion, we can f ind b

large enough such that b > y 0, both b and -b are continuity

points of H, and H(b) -H(-b) 
>

1-H(b ) r
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* 
h(-y0)+ h(y0)÷r b + € 0 2Let D = 0 and D >  . —

H(b) — H(-b) r

: It is straight forward to show -
~~~ > b > y02

00

~~~(h(e - D )  - h(~~-D))dH(8)

-b - y0 y0 b D-y0 D-i-y0r c r r
= + + + + ,~ 

+
~~ 

+ (h(s) —
-

~~~ -b -y0 y0 b D-y0 D+y0

h(P-D))ctH(8) = Ij + ‘2 + 1
3 

+ 14+ 15 
+ 16+ 17•

c—b
‘1 = J (h(s) -h(e-D))dH (~~) 1 0.

-~~

-y0

‘2 = 
~ b 

(h (0) -h (8-D ))dH (8) I [B(b-y0) + h(-y0) -

r(y0+D)} dH(e)

-b

yO
1
3 = (h(s) -h(e-D))dH(9)

-y0
y0

< (h(y 0)+h(-y 0)-r (D-y 0)) dH(e).
-y0

b
14 

j’ (h(~~) -h (e-D))dH(~~) I {h(y0)+B( b-y0) -r(D-b)]
y0

b

I dH (Q).

y0
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~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~

- -

28.

D-y0 
D-y0

1
5 

(h(s) -h(e-D))dFI(0) I (h(y 0) +B(D-2y 0) - ry0) 

b 

dil (S).

r D+y0 r
D+
~o

(h(~~) - h(o-D))dH(9) ~ 
(~-i(y0) + BD) ,~ d H ( e ) .

D-y0 
D-y0

00 00

17 
(h(s) -h(~~-D))dH(B) ~ 

BD dH(e).

D+y0 
D+y

0

Putt ing all the p ieces together , we have

(h(8 D*) - h (e-D))dH (e) <

-yOr
[B( b-y0) + h(-y~ ) - r(y0+D)] ~ dH(e)

—b

yO
+ [h(y0) + h(-y0) 

- r(D-y0) ]  ~ dH(e)
_y
0

+ [h(y 0) + Bb - r ( D - b ) ]  d i l ( s )
y0

- i
It 
_ _  

_ _ _ _ _ _ _L - : ~~~~~~~~~~~~~~~~~~~~ •~~~ 
_ _ _ _ _ _ _
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r 
-

+ [h(y0) + RD - ry0] -
~ dH (B)

b

D+y 0
-f {h(y0) + BD] 

,
I d H ( B )

D-y0

+ BD dH (9)

~ 
h (_y

0) + h (y0) + BD(1 - H(b)) - rD(H(b) -H(-b)) + rb

~ 
h (-y0) + h(y0) + rb - ~~ (H(b) -H(-b ))

2

-rD(H(b) -H(—b ))

K -€ .

h (_y
0) + h(y0) + rb + € 0 2Similarly if D K - . —

H(b) -H(-b) r

then

(h(~~ D*) - h(5-D))dH (8) < -€ .

So any €-optimal decision D
€ for H must sat isfy

ID~I 
h(-y0) +h(y0) + rb + € 0 2

• H(b) -H(-b ) r

Let b1 be a continuity point of H chosen so that b > y and
1 0 

~— -- ~~~ -~~ ~~~- -- -~~ - - - - -- -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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(H(b1) -H(-b1))/(1-H(b1)) > 1 +

Let J~~ * H. Then ~ N ?yn > N,

n i )_ J n bi)~~
1 J n(bi))>2B~~

and

J~ (b 1) 
_ J

~ (_b
1) > * (H(b1)-H (- b1) ) .

Let m= 2(h (-y 0) + h(y0) + rb1 + € 0)/r. 
The €-optimal decision s I’or

for all n >N  is within

(~ m/(Jn( b1) 
- ~~ -b1)), m/(Jn( b1) - ~~~ -b a ))),

and hence within

(-2m/(H(b1) -H (-b1)), 2m/(H(b1) -H(- b1))).

Thus condition (iii) obtains, and hence (V,H) is strongly stable

by Lemma 3. Q.E.D.

Co rollary I

Let I() be the usual indicator function. Then V(e,D)

= a(A-D)I(8 >D) + b(D-e)I(e K D) is strongly stable with any H such

that $v(e,D)dH(e) is finite for some B.

When a= b, V in Corollary I specializes to absolute error.

The following example shows that conditions (i) and (ii),

and symmetry of h around zero (h(x) = h (-x) are not sufficient

to assure strong stability 01’ (v,H). 

— -- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Examp le 6

- x if 0� x I 1

I if 1 K x

h(x) = (x-2j~~~ ). ~~~~+ (j-1)i~~ if K x <3j3+I j(j 1)J
1

it’ 3j~~
1
- j(j-I)~~

1<xI2(j+l~~~
2

for j=2,3,...

and let h(-x) h(x). 
-

Then h is cont inuous , symmetr ic, piece—wise linear, non-

decreasing in (0,00), non-increasing in (_ o b ,O ) ,  and satisfies

h(0) 0 and the Ltpschttz condition. Now let H be the distribution

function of the random variable sure to -take the value 8 = 0, and

let H. Let F~ (8) be a convex combination of H(S) and

with weights (I _ .
~
.) and ~~ -, where J~ (~~) is the distribu-

tion function of the random var iab le  sure to take the value

- n ( n _ 1) nl~~

Then F~~-* H, and D
~1
(e)€ (-E.E) whe re € K 1. Also

$v(e,D~(e))dF~(8) - int r V(S,D) dFr (e)

> SV(8,Dn ) n(8) 
- 

$ 
V(e ,2(n)~~

1)dF~ (e)

> ~~~ h(3n~~~ - ~(~~_ 1)
fl_ l

) - € - ~~~ h(3n~~~ - 
~(~~_j)

fl~~ - 2n~~
1
)

— n n

- !2. ! h(2n~~
t
)n
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= ~~ - € - h(n’~~ - ~(~~ 1)
n_I
) - a! h(2n~~1)

n-I I n+1 n-I n+i.
• > n - - — h(2n ) - — h(2n

— n n

> n~~
1 

- € - (n-I)~~
1 
> I

Thus it is easy to see that (V,H) is unstable in this case.

Theorem 4 (V,H) is strongly stable it, in addition to assumptions

(i) and (ii), the following condition (v) is satisfied:

-

• 

(v) l- i (x)  = h (-x ) ,  h is unbounded, and h(x+y)< h(x)+ h(y),

for x, y > 0.

Proof :

• Our strategy is to apply Lemma 3 by proving condition (iii).

Choose €~~>0, and € such that 0 < € < €0.

Since H is a distribution, there exists a positive number b

such that H(-b) 1 1/4, H(b) > 3/4, b > y0 and b and -b are

continuity points of H. Since h(x) is unbounded, there is a

O such that

h(D0) > 2h(b) + Bb + 4€ Q.

Now we will show that D* =O Is better, by at least € , than

any D >b + D 0 or any B < -b - D
0

. Suppose first that D>b + D0. Then

I = j’ v(e,D*)dH(~ ) — 
$ 

v(e , D ) ctH(~ )

-b 
*

= $ (t~(e—D ) —h(8—D))dH (R) + 

~~ - b  

— h ( e — D ) ) d H ( 8 )



- 
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+ 

~~ b 

h ( 8 _ D
*

) - h ( e - D ) ) dH(O) = Il + ‘2 
F

*
Ii = (h (e-D ) -h(O-DfldH(e ) 10

since h(e—D ) — h (e—D) 1 0 if B if e € ( — x , - . b ) .

In the secon d region of integrat ion, (-b,b), we have

-b < 9 - D <  b. Then h(O-D)Ih(b) . Also e- D<b - (b+D 0)=-D0<O.

Hence

12 = 
~-b 

0_D*) -h(e-D))dH(e)

rb
I j ( h ( b ) - h( b -D) ) c i H ( 5 )

-b

= [h(b) -h (D-b)~~[H(b) -H(-b ) ]

I *[h(b) -h(D-b)].

*
= i (h(e—D ) — h (e—D))dH(e)

-) v b

1100 
*( j h ( D - D  ) d H ( e )

— b

< ~~~h(D)— 4

Hence

I I j + 12 + I
3

______  - -- -
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34.

~ 1[h ( b )  - h ( D - b ) ]  + ~~~h ( D )

= *h (b) - ~ h ( D -b )  ~~~~~~ (n(D) - h(D-b))
4 24

< ih(b) - -L-1(D-b) + ~-Bb— 4 4

Thus the €-optima]. decision for H cannot be greater than

b-+- D0. Similarly it cannot be smaller than -b-D0. Consider now the

sequence G~ -Z~ H. There is a point b1 such that both b1 and

are con t inu i ty  points  01’ H satist’ying b1 >b , U(b1)> (/8,

and H (-b1) ~ 
1/8. Let D1 satisfy

h(D1) > 2h(b1) + Bb
1 

+

Since ~~~~ H, there is an N such that yn >N , G~(-b 1)<1/4

and G~(b1) > 3/4. Then for all such n, Dn(€) € (-b 1 -B1, b1 + D 1) .

Lemma 3 now applies, so (V,H) is stable.

Q.E.D.

Corollary 2: If V (e,D) = I e- - D I~ O< p II  then (V,H) is

strongly stable. The next example shows the effect of asymmetry .

Example 7: Let V(e,D) = h(8-D), where

x > O
h (x) =

I x t 1
~~ x ( O  

~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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35. 
11

Then let H (s) and G~ (e), F~ (B) be the same as In example 6

except now J~(e) is the di str ibut ion funct ion of the ran dom
var iable sure to take the value 16n4. It can be shown that

(V ,H) is unstable in this case.

I
~~~~~ ~~~~~~~~~~~~~~~~ 
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Conclusion

We ar~ study hi~ then a p a r t i c u l a r  k i n d  01’ c o n t i n u i t y ,  a kind

we j udge .- to—- -~~ important especially a: a prologue to attempting

-iicitation of prior distributions and utility functions. There

are ot~:er kinds of continuity that are alternatives to those we---ha-ve~

cho sen , and which also deserve study-c

~We believe that stability, as defined in this paper, offers

the beginn ing of a Bayesian app roach to robustness. We note that-

on the real line, squared error loss i s  never stable , while absolute

error is strongly stable for all opinions H. While the approach in

this paper 1s more mathematical than some other approachcs to

robustness , which may be a disadvantage , it has the advantage of startIng

from a clear philosophical foundation, namely personalistic

Bayesianism. . 
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i l u  u r n  sup [
C
Ln(O~ Dr~(c) )dF~ (u) - m i  L~(e, D)dF~ (O)} = 0

for  eve ry sequence D~ ( c )  s a t i s f y i n g

~
‘
Wn(O~

Dn(€ )) dGn ( 8 )  < m i  W ( O D ) dG ( e )  + ~~ .

We show that squared error  loss is uns tab le  wi th  any p a i r  if tn :
parameter space is the real line, that any bounded loss function
V(~~,D) that is continuous in 9 uniformly in D is stable

w ith any op in ion H. Finally w~ examine the estimation or
prediction ca:c V (9,D) =h (B-D), where h is continuous, non—

decreasing in (o ,~ ) and non-increasing ifl “(— ~,o) and has
bounded growth . While these condition s arc not enough to assure

~trori g s t ab i l i ty, various con i i.t ion : arc given that are suf-
1’ieient.

We believe that stability offers the beginning of a

Bayesian Theory of robustness.
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